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Soft Computing in Multidisciplinary Aerospace Design New Directions for Research

Prabhat Hajela
Mechanical Engineering, Aeronautical Engineering & Mechanics, Rensselaer Polytechnic Institute

5020 Jonsson Engineering Center, RPI Troy, New York, NJ 12180-3590, United States

Abstract methods have an important role in determining the data

that must be used to develop such approximations.

There has been increased activity in the study of methods • Mathematical modeling is critical to the success of the

for multidisciplinary analysis and design. This field of MDO approach. Such a model is required to predict the

research has been a busy one over the past decade, driven system behavior and its sensitivity to design variable

by advances in computational methods and significant new changes. Models can be considered to belong to the

developments in computer hardware. There is a concern, broad categories of either physical or non-physical

however, that while new computers will derive their models. These models are necessary to answer 'what-

computational speed through parallel processing, current if' questions.

algorithmic procedures that have roots in serial thinking are * Design-oriented analysis basically deals with the issue

poor candidates for use on such machines - a paradigm shift of cost vs. accuracy in analysis for optimization. Inex-

is required! Among new advances in computational pensive re-analysis is critical and is often based on a

methods, soft computing techniques have enjoyed a linear representation of the problem or on the basis of

remarkable period of development and growth. Of these, response-surface like approximations. In some cases,

methods of neural computing, evolutionary search, and mathematical models can be constructed which only

fuzzy logic have been the most extensively explored in predict the gross system behavior, and provide crude

problems of multidisciplinary analysis and design. The models for preliminary design. Design oriented analy-

paper will summarize important accomplishments to-date, sis must also consider how different components of the

of neurocomputing, fuzzy-logic, and evolutionary search, MDO problem must be executed so as to minimize the

including immune network modeling, in the field of effort required in computing their interactions.

multidisciplinary aerospace design. * Decomposition is a major concern in MDO, and entails
the break-up of a large-scale problem into a sequence

Introduction of smaller, more tractable subproblems. Depending
upon the problem under consideration, the interactions

The optimal design of multidisciplinary systems has between the decoupled subproblems may be either

received considerable recent attention [ 1-3]. This initiative hierarchic or non-hierarchic.

has been largely motivated by a recognition that the design iscar e outrby us a ma themtic pro-

and development of a complex engineering system can no is carried out by using traditional mathematical pro-

longer be conducted by handling its different components in gramming algorithms or newly emergent search tech-

isolation. Both an increased level of complexity within the niques based on random sampling such as genetic

components, and the competition driven need to extract the algorithms and simulated annealing.
advantages of a synergistic design process, dictate the need Human intervention continues to be an important issueadvanagesin MDO as the solution process is not a push-button

for a more comprehensive strategy. Inspite of an increased

awareness of the potential of formal optimization methods in operation. Operations such as algorithm termination,

the design process, their application in real-life multidisci- problem reformulation, interpretation of results, over-

plinary systems continues to be a challenge. These chal- riding the design process, require human intervention.

lenges stem from the fact that practical scale Methods of artificial intelligence and expert systemslenge ste fro thehave been explored in this context.

multidisciplinary design optimization (MDO) problems are h a tion stregin t ns context.

characterized by the presence of a large number of design Optimization strategies must continue to be studied in

variables and constraints, and analysis from various contrib- the context of the MDO problem. This includes optimi-
zation within a subproblem or a parallel optimization inutmng disciplines which are not completely independent, alsbrbesicuigwy ocodnt h ou

involving one- or two-way couplings between the disci- tio towards a ncedin t.

plines. In a number of situations, these analysis may be tion towards a converged point.

either very expensive, or in a worse case, simply unavailable A detailed discussion of all of these issue is clearly beyond

to a design engineer in a form other than physical experi- the scope of this paper. This paper attempts to show how

mentation. MDO can be defined as a multifaceted entity soft-computing methods have been adapted in the solution
with many conceptual components, and comprising of many of some of the problems that are endemic to the multidisci-

established disciplines and technologies. Sobieski [1] plinary design problem. Discussions related to problem

defines the principal building blocks of the MDO problem in decomposition, coordination of solution in decomposed sub-

Figure 1. This taxonomy chart clearly shows the different systems, design space search, and design oriented analysis,

areas in which research must be focussed if multidisci- especially in the context of soft computing, are discussed in

plinary optimization is to embraced as a standard procedure greater detail.

in industry design practice. These areas can be identified as The MDO Problem
follows.

Approximations are needed to replace expensive exact The design of a complex engineering system involves many
analysis, where the latter can come from either sophis- interacting components or parts. Such interactions are
ticated numerical codes or through physical experi- clearly shown in Figure 2 for an aircraft wing structure. The
ments. Towards this end, the focus has resided in design of this wing structure includes an interaction among
developing derivative-based extrapolations, or deriva- the primary disciplines of structures, aerodynamics, controls
tive-free approximations such as response surfaces, and propulsion. Also central to this design is the input from
fuzzy-logic, and neural networks. In case of the latter, the field of aeroacoustics. The figure schematically shows
design of experiment approaches such as Taguchi the multiple two-way couplings between the contributing

Paper presented at the RTO AVT Symposium on "Aerodynamic Design and Optimisation of Flight Vehicles in a
Concurrent Multi-Disciplinary Environment", held in Ottawa, Canada, 18-21 October 1999, and published in RTO MP-35.



17-2

obtained in 8-10 revolutions of the blade. This process of Both the BP and CP neural networks were used to generate
obtaining trim condition prior to load calculation introduces the mapping between the design variables and the response
additional computational costs. quantities of interest. Some of these mappings are quite

nonlinear, and require careful consideration of the choice of

The objective of the design problem was to design the blade network architecture and of the number of training patterns.

geometry and internal structure to minimize a weighted sum A number of training patterns was generated, in the range of

of hub shear force and bending moments for a hingeless design variable variation, and this included both stable and

rotor blade in forward flight; aerodynamic, performance and unstable designs. A BP network with 14 input layer neu-

structural design requirements are considered as constraints, rons, 10 hidden layer neurons, and S output layer neurons (a
and dynamic requirements constitute a multicriterion objec- 14-10-5 network), corresponding to 5 output quantities, viz.,

tive finction. The premise behind the approach is that a min- vertical hub shear, flap moment, lag moment, rotor thrust,

imization of the hub loads and moments translates into lower and the failure criterion index R, was established and trained

vibrations that are transmitted to the fuselage structure. with 550 training patterns. This training presented problems
in that it was difficult to reduce the training error to below

The planform geometry of the blade is shown in Fig. 5a. 3%. The training data was then sorted to separate the

The blade is tapered in both the chord and the depth, and all designs that yielded stable and unstable responses; it was

loads are assumed to be carried by the structural box shown considered expedient at this stage to establish 5 networks,

in Fig. 5b. The design variables for this problem are also each mapping the design variables into one output only (14-

shown on the figures and summarized in Table 1. The blade 10-1 networks for all but the lag moment, where a 14-10-8-1

planform geometry is defined by the chord ratio Xc and the network was used). The training of each of these networks
could be done in parallel. The training using these separatedpoint of inception of taper along the span denoted by TR.The pten rcee el ovrigt nerro esta
patterns procceded well, converging to an error of less than

blade twist varies from q, at the root to zero at the tip; this 1%, with the exception of the lag moment (error was 2.6%).

variation maybe linear or nonlinear, and is controlled by the The observed pattern of time variation for the lag moment
twist shape parameter 6. Both qt and 6 were design vari- was quite nonlinear, and provides an explanation for the dis-

ables in the problem. Two nonstructural masses were posi- crepancy in training. Table 2 shows the results of testing
tioned along the span of the blade, and the magnitude of these networks for generalization performnance using 7 sets
these masses (mt and m2) as well as their locations along the of design variables that were not part of the original training

span (dml and d1, 2 ) were considered as design variables, set. Similar generalization performance was obtained from

The rotational speed of the rotor £2 was also selected during networks trained with the unstable data. The difficulty in

the design process. The remaining variables, although training the networks for the combination of stable and

descriptive of the internal structure of the blade, have a unstable data can be attributed to either a) a completely dif-

strong influence on both aerodynamic and dynamic perfor- ferent input-output relationship in one or more components

mance. These were the horizontal flange thickness tt, and or b) excessive data for the number of weights and bias con-

the left and right vertical sections of the box beam denoted stants in the network that could be varied to fit the data.
by t2 and t3 , respectively. For the Graphite/Epoxy rotor Similar experiments were also performed using the full CP
blade, the horizontal flanges are symmetric +/-45 deg lami- network, that generates an identity mapping of the type
nates; this layup is also present on the outer half of both ver- [X,Y] -> [X',Y']. This network architecture requires a
tical sections of the box beam. The inner half of the vertical much larger number of input patterns, and the quality of
walls are divided into two segments, with a layup of +/-0 generalization depends upon the number of Kohonen layer

and +/-02 deg, respectively. This accounts for a total of 14 neurons that are permitted (indirectly a measure of maxi-

design variables for the problem. Note that it is relatively mum cluster radius). The results of numerical experiments
easy to increase the problem dimensionality by simply vary- designed to test this network are shown in Table 3.
ing the thickness and orientations of plies in discrete seg-
ments along the span. Fuzzy Logic Based Function Approximations

The output quantities of interest are the maximum peak-to- In contrast to neural networks or other conventional function
peak values of the scaled shear force, flap bending moment, approximation techniques, fuzzy logic is based on natural
and lead-lag bending moment (Fz, My and M,), the horse- languages. In a system, the problem description may be

power required during hover and forward flight (HPh and imprecise, not due to randomness, but because of inherent

HPf), and the rotor thrust coefficient and solidity (CT and Y). fuzziness. By taking advantage of the significance of natural

The last two must be bounded to limit the lift performance language which has developed over many years, fuzzy logic

of the rotor disk so as to avoid blade stall. Bounds are also can effectively model a complex real world without getting

required on the blade autorotation (AD) capacity, and on the into the unnecessary detail.

maximum allowed weight of the blade. A structural failure
criterion based on the Tsai-Wu measure was used for the The notion of fuzzy sets was first introduced by Zadeh in

composite structure in this problem. Limiting values of 1965 [12]. Since then, conceptual ideas were developed for

UYbuck, the static stresses due to buckling were also imposed, nearly 10 years with very few applications. However, many

For one given set of design variables, the analysis time recent successful uses of fuzzy set theory in various fields

required for the evaluation of the objective and constraint have established it as an effective tool to represent and man-
functions is substantial (about 18 CPU minutes on a SPARC age vague information [13-15]. Fuzzy set theory has also

station) and clearly not amenable to integration within an gained much attention in the field of design optimization.
iterative optimization environment Fuzzy optimal design of structures was introduced by Yuan

and Quan [ 16,17]. Fuzzy optimization techniques were also
applied in structural optimization problems with multiple
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sitivity over the range of network training, and identifies the data is generated from a procedural simulation of the multi-
importance of any input component on an output quantity of disciplinary system, and a neural network is trained to
interest. Such an analysis can be used to systematically par- mimic the input-output relations of this system (generaliza-
tition the design space in a decomposition based design tion). In such use, the neural network may be considered as a
approach. This concept is discussed in a later section of this response surface approach where the order of the polyno-
paper. mial fitting function does not have to be specified. In fact,

the neural network is a special form of response surface
The counterpropagation (CP) neural network was first intro- where the response function is a nested squashing function;
duced by Hecht-Nielsen as a combination of two basic the interconnection weights of the network that have to be
architectures - the Kohonen's self-organizing neural network learned correspond to the regression parameters in a typical
and Grossberg's outstars neurons. However, the original ver- regression model. Such a neural network is ideally well
sion of the network did not receive widespread attention due suited for an immersive design model, including one using a
to its unimpressive generalization performance, particularly virtual reality environment.
in comparison to the multilayer perceptron model. As shown
in Fig. 4, this network contains three layers - a fan-out layer ANN in Function Approximations - Example
as in the BP network, a layer of Kohonen or feature sensitive
neurons, and an interpolating or Grossberg layer. The inputs At a preliminary design level, the multidisciplinary sizing of
to the network are directed to the Kohonen layer, which acts a rotor blade may require an integration of the disciplines of
like a clustering device. In other words, neurons in this layer acoustics, aerodynamics, dynamics, and structural analysis
classify all input vectors based on some identifiable features within the optimization framework. This simplified example
in these vectors. Each neuron in the Kohonen layer repre- illustrates some of the inherent complexities in such design
sents one such cluster, and the interconnection weights problems, and the use of neural networks in this context. The
between the input nodes and this neuron are representative use of composites in rotorcraft blade design provide oppor-
of an average of all input patterns of that cluster. Similarly, tunities for enhanced aerodynamic, structural, and dynamic
the interconnection weights between each Kohonen neuron performance. With composites, it is practical to fabricate
and the output or Grossberg layer neurons are representative non-rectangular blades with variations in twist distribution
of an averaged output of all patterns belonging to the cluster, and airfoil sections along the blade span, thereby contribut-
Improvements to this basic format have been introduced ing to increased flexibility in aerodynamic design. Satisfac-
wherein an input vector is classified as belonging to many tory aerodynamic design requires that the required
different clusters, albeit to different degrees. A weighted horsepower for all flight conditions not exceed the available
average using the different clusters produces a much better horsepower, that the rotor disk must retain lift performance
generalization performance. to avoid blade stall, and that the vehicle remain in trim.

Important factors in structural design include material
The primary differences between the CP and the BP model strength considerations for both static and dynamic load
are in the time and data required for network training, and in conditions. A combination of flapwise, inplane, torsion, and
the performance of their generalization capabilities. The centrifugal forces typically comprise the static loading.
former requires less computational effort to train, an issue of Another important consideration that encompasses both
some importance when one considers modeling of extremely structural and aerodynamic design, is the autorotation capa-
large multidisciplinary systems. However, its generalization bility. The autorotation requirement pertains to maintaining
performance is poorer when compared to the BP model. the mass moment of inertia of the rotor in the rotational
Improvements to the CP network have been implemented plane at an acceptable level. This is a function of the vehicle
that partially circumvent this problem; however, large sets of gross weight, rotor aerodynamic performance, and the rotor
training data continue to be required for their effective use. system mass moment of inertia. Finally, dynamic design
An advantage over the BP network is that CP networks pro- considerations of the rotor blade pertain to the vibratory
vide a pattern completion capability, wherein, upon presen- response of the blade under the applied loads; this design
tation of an input vector to the network, some components of limits the dynamic excitation of the fuselage by reducing the
which may be missing, the network approximates the miss- forces and moments transmitted to the fuselage.
ing components to produce a relevant output.

A finite element in time and space formulation was used to
In using neural networks for approximate analysis, a set of model the dynamics of the blade [11]. This formulation is
input-output training patterns must be obtained from the real based on a multibody representation of flexible structures
process that one is attempting to simulate. Determination of undergoing large displacements and finite rotations, and
the number of such training pairs, and how they should span requires that the equations of motion be explicitly integrated
the intended domain of training, requires experimentation in time. An unsteady aerodynamic model is used to obtain
and experience. The same statement is applicable to the the induced flow and to calculate the aerodynamic forces
selection of the network architecture, i.e., the number of lay- and moments in hover and forward flight. In addition to the
ers and the number of neurons in such layers. While mathe- geometric nonlinearities that are inherent in this problem,
matics can be used to assess bounds on such requirements, the loading on the blade varies as it moves around the azi-
in a number of engineering problems, such approximations muth - on the advancing side the flow velocity over the blade
tend to be over conservative. This continues to be an active is additive to its tangential speed; on the retreating side,
area for research. these velocities substract. Consequently, in order to main-

tain force and moment equilibrium, the pitch of the blade is

Neural networks have been explored as function approxima- continuously changed as it rotates around the azimuth, and
tion tools in problems of multidisciplinary analysis and the hub loads are a function of the blade rotational fre-
design, most commonly as a computationally inexpensive quency. There is a transient period during which equilib-
replacement for procedural analysis. In such cases, training rium of the vehicle is established (trim), and this is generally
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subsystems. The interactions between the disciplines these ideas are still relevant and are broadly described as
generally result from interactions between specific physical 'analysis for design', new requirements for developing non-
phenomena, two of which are illustrated in this figure. In gradient based global approximations have emerged. This
such an environment where everything appears to effect latter requirement is in part due to the increasing interest in
everything else, design of subsystems in isolation is clearly applying optimization methods to real systems with mixed-
not the strategy of choice. In an approach where the coupled variable design spaces. More importantly, it is driven by the
multidisciplinary problem is treated as a single, large-scale need to generate 'mathematical models' for including disci-
optimization problem, the following difficulties have been plines such as manufacturability, cost, and maintainability,
identified: into the optimization problem. The use of response-surface
* The dimensionality of the design space may increase to like approximations based on neural networks and fuzzy

a degree that obtaining reliable solutions to the optimi- logic have been explored in this context.
zation problem is rendered questionable. Furthermore,
there is a diminished capacity to evaluate the accept- Approximate Models for Analysis
ability of solutions in higher-dimensionality design
spaces. This section of the paper describes the use of artificial neural

* For an iterative analysis environment that is typical of networks and fuzzy logic in developing approximate models
optimization, the presence of coupling between disci- for analysis, designed primarily to reduce the computational
plines would introduce an inner loop of iteration (anal- effort involved in MDO problems. The use of fuzzy logic in
ysis iteration) that adds to the computational costs. this application is motivated by the need to include in the
In a number of design problems, the design space may optimization process, disciplines for which precise and well-

be nonconvex, and in some situations, even disjointed. defined analytical models are unavailable; these include, for
Such characteristics call for the use of nontraditional example, issues pertaining to the cost, manufacture, and
search techniques that do not have a propensity to seek maintainence of designed artifacts. Both artificial neural net-
the nearest relative optimum from the nominal starting works and fuzzy logic based models are much like response
solution surfaces, where a polynomial is fitted to given experimental

Decomposition methods are introduced in multidisciplinary or numeric data. Unlike the response surface approach
optimization to reduce large coupled optimization problems where the order of the fitted polynomial must be specified,
into a sequence of coordinated, smaller, more tractable sub- these methods provide greater flexibility to the user.
systems. The subsystems not only allow for a reduction in
problem dimensionality, but also allow for implementing Among the most widely adapted neural network architec-
specialized methods of analysis in each subsystem, and pos- tures in function approximation are the backpropagation
sibility of distributed, parallel processing. The interpretation (BP) network, counterpropagation (CP) network, and the
of optimization results in each subsystem is also facilitated radial basis network [6,7]. As shown in Figure 3, the BP net-
by the dimensionality reduction, work architecture consists of a layer of artificial neurons to

which the external stimuli are presented, a series of hidden
We start first with a generic mathematical statement for the layers of artificial neurons, and a layer of neurons at which
optimization problem written as follows, the output is available. The input neurons do not process the

Minimnize F(X) input stimulus; they simply serve as 'fan-out' points for con-
nections to neurons in successive layers. Neurons in each

Subject to gjX < 0 j = 1, m layer are connected to all neurons in adjacent layers; there is

hk(X)) = 0 k = 1, p (1) an interconnection weight associated with this connection
which defines the strength of the connection. Also associ-

XL •_ X < X• ated with each artificial neuron is what is referred to as an
activation function (sigmoid function or step function). TheHere X is the vector of design variables; superscripts 'L' and wihe u falipt oapriua ernaepo

U' dnot th lowr ad uperbouns, espctivly;F(X is weighted stun of all inputs to a particular neuron are pro-
'U,' denote the lower and upper bounds, respectively; F(X) is cse hog hsnnieratvto ucint rdc

cessed through this nonlinear activation fuinction to produce
the objective function and gj(X)and hk(X) are the inequality a neuron output, which then feeds into all neurons of the

and equality constraints, respectively. If the dimensionality next layer.
of the aforementioned design problem is manageable (of the
order of a few hundred design variables), and if the gradient The presence of the hidden layer, and the nonlinear activa-
information is readily available, then traditional gradient tion finctions, enhance the ability of the networks to learn
based methods of nonlinear programming can be effectively nonlinear relationships between the presented input and out-
used to obtain the optimal solution. However, in those prob- put quantities. This 'learning' or 'training' in these networks
lems where the design variables are a mix of continuous, simply requires the determination of all interconnection
discrete, and integer type, gradient information is not very weights of the network and characteristics of all activation
useful, and alternative strategies must be investigated. A functions, so that the network accurately produces the
mixed-variable design space also limits the usefulness of tra- desired output for each of the input patterns used in the
ditional gradient-based optimization algorithms, and non- training. Once such a trained network is established, it
gradient methods for optimal search have received attention responds to a new input within the domain of its training by
in this context. producing an estimate of the output response. To this extent,

it serves as a function approximation tool that provides inex-
Another dominant concern in large-scale MDO problems is pensive finction infornation in stochastic sampling based
the high computational cost of analysis. Early implementa- search procedures [8]. The trained weights of this network
tions of multidisciplinary synthesis methods looked towards can also be used to identify dependencies among design
approximation methods for relief in this area (efficient struc- variables and design objectives/constraints [9,10]. This
tural reanalysis and Taylor approximations) [4,5]. While weight analysis may be considered as a smeared global sen-
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objective functions [18,19]. select from among discrete choices of membership functions
and tune their parameters until the error between fuzzy out-

Fuzzy sets are inherently different from classical sets; while puts and target values are minimized.
the latter either wholly includes or excludes any given ele-
ment, a fuzzy set can contain an element partially by using Fuzzy logic approximation models are most appropriate for
degrees of membership. An example which defines fuzzy those situations when there is imprecise definition of param-
sets is as follows. Consider the elements of a set defined as eters describing the desired model. One such model that has
heights to include 5'0", 5'8", and 6'2". If another set is to been constructed consists for creating a numerical model
include only the tall heights from the given elements, it that relates the layup sequence of the individual plies in
would, most definitely, include the element 6'2" and exclude composite panels for rotorcraft fuselage, to the time required
the element 5'0" since 6'2" is considered to be tall by most to fabrucate such models on an automated fiber lay-up
while 5'0" is not. For the element 5'8", it would be difficult machine. In addition to limited numerical data that relates
to determine whether to include or exclude it from this set. parameters such as panel geometry, location and frequency
Some will consider a height of 5'8" to be tall and others of cutouts, and fiber orientations in individual plies to the
won't; this element sits on the fence. While classical sets layup time, input from the machine operator was incorpo-
have no way of accommodating this type of element, fuzzy rated in construction of a fuzzy-logic based approximate
sets can include them by assigning each of them a degree of model that was subsequently used in design optimization.
membership. The degree of membership of each elements in Additional details on this model may be found in Reference
a fuzzy set can be determined by its membership function. [20].
Since 5'0" is excluded from the set referred to as "tall", it is
assigned a degree of membership of 0.0; in a similar vein, a Evolutionary Search and Genetic Algorithms
degree of membership of 1.0 is assigned to the element 6'2",
while some numerical value between 0 and 1 is given to the The strengths of evolutionary algorithms have been clearly
element 5'8". As an example, in fuzzy logic, 5'8" can be established with reference to optimal search in generically
assigned a degree of membership of 0.7 which indicates that difficult but very realistic multidisciplinary design problems
the person is somewhat tall. such as those containing discontinuities or nonconvexities in

function behavior, discrete variation in design variables, and

If a classical set tall heights of a real number greater than 6 where gradient information is generally unavailable. The

can be expressed as tall = { xJ x > 6) , then a fuzzy set tall genetic algorithm is based on an elitist reproduction strategy,

heights in X is defined as a set of ordered pairs where chromosomal representation of designs is evolved

tall = (x, v 1(x)) I x E X) , where X is the universe of using random operations encompassed in operation like
crossover and mutation, with bias assigned to those mem-

disclosure, x is an element of X, and lttau(x) is called the bers of the population that are deemed most fit at any stage

membership function of x in the fuzzy set tall heights. A of the evolution process. In order to represent designs as
membership function maps each element of x to a value chromosome-like strings, stringlike representations of the
between 0 and 1. Although the membership function can be design variables are stacked head-to-tail. Different represen-
any arbitrary curve whose shape is defined according to tation schemes have been adopted, including use of the deci-
one's subjective perception, several most commonly used mal values of the design variable [21], use of integer
parameterized functions are available as a guideline. These numbers [21], or most popularly, a conversion of all design
include the triangular membership function, the trapezoidal variables into their binary equivalent. In the latter case
membership function, the Gaussian membership function, where the chromosomal string is a number of 0's and l's, the
the generalized bell membership function, and the sigmoidal numerical precision with which the design variable is repre-
membership function. Associated with each are a number of sented is determined by the string length.
parameters that must be specified; they also offer a variety of
smooth or nonsmooth functions to model variations of a Increased adaptation into the multidisciplinary design envi-
quantity of interest. ronment has been accompanied by a number of modifica-

tions to the basic GA approach. Of these, direct schemes
Fuzzy logic is much like standard boolean logic except for (non-penalty function methods) by which to account for
the fact that in addition to 0 and 1, fuzzy logic can also oper- design constraints [22,23], have received some attention. An
ate with any numerical value between 0 and 1. There are a approach applicable to a case where constraints are linear
number of common operations such as intersection, union, and the design space convex, has been described in [22].
and complement of fuzzy sets. The standard truth tables of Other methods, based on strategies that adapt useful features
Boolean logic are extended to fuzzy sets by replacing single- of the feasible designs into the infeasible population, have
valued operations by multivalued logical operations [ 12]. been proposed [23,24]. In [24], the process of adaptation is
Fuzzy rules are defined to map linguistic input and output through the use of an expression operator, which like the
values, and use conditional statements in the form of if-then- crossover and mutation operations in genetic search, is prob-
rules. In the case of boolean logic, if the antecedent part of abilistic in nature. A similar process of adaptation ("gene-
if-then rule is true then the consequent part of if-then rule is correction" therapy) is also at work in another strategy that
also true. However, in fuzzy if-then rules, if the antecedent is is based on immune network simulation [23].
partially true to some degree then the consequent is also par-
tially true to that same degree. Given the freedom to choose Binary coded GA's search for an optimal design from among
from among different membership functions, fuzzy logic a discrete set of design alternatives, the number of which
allows for the creation of an optimally tuned input-output depend upon the length of the chromosomal string. Large
function mapping. Evolutionary fuzzy modeling employs number of design variables, and/or considering a very fine
genetic algorithm based optimization to evolve fuzzy rules precision in continuous design variable representation con-
and membership function parameters. Genetic algorithms tributes to long chromosome string lengths which detracts
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from the efficiency of the search process. These problems objectives/constraints. This weight analysis may be consid-
are particularly relevant in large-scale MDO problems, and ered as a smeared global sensitivity over the range of net-
several solution strategies have been proposed in this regard. work training, and identifies the importance of any input
Methods such as multistage search [25], wherein the granu- component on an output quantity of interest. The approach
larity of the genetic algorithtn based search is varied through results in the formation of a transition matrix [T], the com-
a successive increase in the precision, and an approach ponents Tij of which reflect the importance of the i-th input
which assigns significance to the previous generations of quantity on the j-th output component. First, the matrix
evolution in genetic search referred to as directed crossover product of the interconnection weight matrices is performed
[25], have been proposed. The latter simply attempts to as indicated in Eqn. (4), and the elements of the transition
determine through computations, significant bit positions on matrix normalized as shown in Eqn. (5).
the string, and to constrain the crossover operation to these
bit locations. A number of applications of both the basic GA N- 1

and its enhanced forms, in problems of multidisciplinary [ jT] l wk (4)
structural design, structural layout determination, and com- k 1
posites design, are described in [26].

The implementation of genetic algorithms in a decomposi- T..
tion based approach has also been studied [27]. Consider the i1 (5)

design problem to be formulated in terms of a design vari- J i

able vector X. Also, let the design constraints gj(X) belong
to te goba costrant et . Te vctorXan costrint In the above, Wk is the k-th weight matrix, the coefficientsto the global constraint set G. The vector X and constraint

set G are said to define a system level problem that is formu- wijk/of which represents the interconnection weight

lated as follows: between the i-th neuron of the k-th layer and the j-th neuron
of the i-th layer; N denotes the total number of layers of neu-

Mn or Max F(X) rons in the network architecture. This normalized matrix Tii

subject to G- {g j(X), j = 1...NCON} •0 (2) incorporatestheeffectofthesignofinterconnectionweights

in the analysis. A systematic approach of using this transi-
Assume further that the best topology for decomposing the tion matrix to decompose the problem is presented in Refer-
problem domain resulted in three subproblems A, B, and C, ence 27. For a larger version of the rotorcrafi blade design
and the design variables and constraints for each of these problem defined earlier where the number of design vari-
subproblems are denoted by XA, XB, XC, and gA, gB, and ables has been increased to 42, the use of this transition

gC, respectively. The objective function F(X) for each of the matrix results in a decomposition of this problem as shown

subproblems is the same, and is the system level objective in Table 4. The form of partitioning allows for the most

function. The system level problem of eqn. (2) is now repre- effective variables for a particular set of constraints to work

sented by the following three subproblems. in each subproblem optimization. It is also easy to recognize
that such a split-up in variables could not be realized by a

Min or Max F(XA), partitioning based on disciplinary concerns only, such as one

subject to g,(X,) £0, XB, xC.z coast that is largely used in current practice.

Min or Max F(XB), Once the design problem has been partitioned into a number
(3) of subproblems, the solution within each subproblem must

subject to gB(XB) £0, XA, XC = const proceed with adequate consideration of how a local design
Min or Max F(XC), change influences the results of analysis in another

subproblem. This is referred to as solution coordination and
subject to gc(Xc) £0 , Xf, XB = const is required due to the fact that the subproblems are seldom

completely decoupled. Two strategies that allow for
The principal challenge in this approach is to determine an consideration of these couplings are a) an approach based
appropriate topology for problem decomposition, and once on the use of the counterpropagation (CP) neural network,
such a topology has been established, to develop a procedure and b) through the use of the simulation of a biological
for coordinating the solution among the decomposed sub- immune system modeling. As stated earlier, an important
problems. The latter implies that the objective function property of the CP network is a pattern completion
obtained from each of the three subproblem optimizations capability - if an incomplete input pattern is presented to the
be the same when the process converges to an optimal network, the network estimates the most likely make-up of
design. the missing components. This pattern completion capability

can be of use in GA based decomposition design, by linking
A reasonable and logical approach for partitioning is one the GA optimizer in each subproblem with a trained CP
where balanced subsets of design variables would be network. In this mode of operation, the inputs to the CP
assigned to different subproblems, and where each subprob- network in each subproblem are the design variables for
lem would be responsible for meeting the system level that subproblem, and approximations of the best
design objectives and for satisfying constraints most criti- combinations of variables in other subproblems. Details of
cally affected by the design variables of that subproblem. A how the progress of design variables of each subproblem
trained BP network, can be used to extract the required cau- are transmitted to other subproblems are described in [28].
sality. The weights of a BP network trained to relate the The use of the biological immune system as an approach to
input design variables to the design constraints can be used communicate the coordination information is discussed in
to identify dependencies among design variables and design the following section.
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antigens to all other subsystems. A second stage of genetic
Immune Network Modeling search is then performed in each subsystem where the fitness

function is defined in terms of each individual's ability to
In biological immume systems, foreign cells and molecules, manufacture antibodies that match the newly introduced
denoted as antigens, are recognized and eliminated by type- antigens. This stage of the genetic search is seen as a
specific antibodies. The task of recognizing antigens is for- correction step that introduces compatibility between the
midable due to the very large number of possible antigens; it different subpopulations, so that the process eventually
is estimated that the immune system has been able to recog- converges on the desired design.

nize at least 1016 antigens. This pattern recognition capabil-
ity is impressive, given that the genome contains only about Computational Intelligence

105 genes. This process can be simulated using the genetic Evolutionary search algorithms have a significant role in
algorithm approach, and has been the subject of consider- impluting sea s of aosignificante role inable study [29,30]. implementing ideas of computational intelligence in multi-

disciplinary design. Recent research has shown [32] how

A matching function that measures the similarities between binary-coded rules in the IF-THEN form can be evolved

antibodies and antigens, substitutes for the fitness function using the genetic algorithm, based on information derived

of the genetic algorithm. In a typical simulation of the from a computational domain. In such classifier system type

immune system, the fitness of an individual antibody would of machine learning approaches the rules may be completely

be determined by its ability to recognize specific antigens, arbitrary in the beginning but evolve into meaningful state-

and a genetic algorithm using the matching function as a ments with information extracted from the computational

measure of fitness would evolve the gene structure of the domain. This approach has powerful implications in over-

antibody in an appropriate manner. In the context of a coming problems of a brittle rule-base that were endemic in

binary-coded genetic algorithm, the antibodies and antigens traditional rule-based systems.
can also be coded as binary strings. The degree of match orcompalimentaritydbetweenaan antibody and angrantigenastring A classifier system is generally divided into two parts, a setcornplim entarity between an antibody and an antigen string o ue rca sfes n e sg s.T e m s a els
indicates the goodness of that antibody. A simple numerical of rules or classifiers, and a message list. The message listcontains at least one input from the external environment
measure Z = Dit i=1,Ns can be defined, where Nstring and also provides the framework for the rules to interact

is the length of the binary string, and ti = 1 if there is a match (any rules generated internally are posted here as well).

at the i-th location of the two strings, and is 0 otherwise. A Hence, the message list is dynamic in nature, constantly
larger value of Z indicates a higher degree of match between evolving as the system changes. The classifier rules are

the two strings. Using a traditional GA simulation, a popula- made up of three distinct segments - conditions, actions and

tion of antibodies can be evolved to cover a specified pool of strength. To facilitate the use of genetic algorithms in this
antigens, with Z used as the fitness measure for this simula- approach, all rules are coded as binary strings. The condi-
tion. The manner in which this pattern recognition scheme is tions allow the classifier to read the message list by search-
invoked will determine whether the evolved antibodies are ing for matches between the condition and the message list.
,specialists', i.e. adapted to specific antigens, or generalists If a match is found, the action is posted to the message list.
that provide the best match to a number of different anti- The strength is a number associated with each rule designed
gens. From an applications standpoint, generation of both to indicate its value to the systems, and forms the basis for

specialist and generalist antibodies is useful, and some of the learning. If a rule helps bring about useful responses, it gains
applications have been discussed in [31]. strength. Similarly, an ineffective rule is weakened and per-

haps ultimately purged from the system. The strength of the
In using this approach to account for interactions among proposed approach would be to introduce new rules into the
temporarily decoupled subproblems, the motivation is to system based on principles of genetic search.
adapt changes in design variables from other subproblems
into a particular subproblem with a prescribed frequency in Consider for example, a heuristics based optimization proce-
the artificial evolution process. Note that updating the dure where the objective is to minimize the weight of a truss
design variables of other subproblems must not simply structure while ensuring that the bounds on maximum per-
involve introducing the best design from those subproblems missible stress in each element of the truss are not violated.
but rather an average of the best few designs. In this regard, A solution strategy would entail constructing a number of
a generalist antibody would be developed that is the best random classifiers in the IF-THEN (Condition-Action) for-
representation of a number of good designs. mat. The condition segment of the classifier can be chosen in

a form that it allows for the classifier to be related to the cur-
The proposed decomposition-based design procedure using rent state of the design. One approach for doing this would
immune network system may be summarized (see Figure 6) be to construct a composite measure of all constraints of the
as follows. The stringlike chromosome structure representing problem. The action part of the classifier could be the
the design contains a definition of all design variables. After changes required in each component of the design variable.
partitioning of the design variable vector for each subsystem A very simple-minded operation of the classifier would be to
has been performed, genetic evolution is carried out in each perform a match between the classifiers and the current state
subsystem in parallel, with the fitness function described in of the design; this match would be based on both the magni-
terms of the system level objective function. It should be tude and sign of the constraint values. The winning classifier
noted that only that subsection of the chromosome string would be allowed to execute its action segment, and the
which corresponds to the design variables for that particular resulting change in the state of the design as indicated by the
subsystem is changed. This process can be carried out for a weight and the constraint values, used to either increase or
fixed number of generations, and then a predetermined attenuate the strength of that classifier. Since both the condi-
fraction of fit strings from each subsystem are introduced as tion and action segment of the classifiers are initially ran-
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domized, the first set of design changes may be quite erratic, automata [36] to both analyze and design structural systems
and the rules must evolve in a manner that subsequent steps presents distinct possibilities. This approach represents a
will produce improvements in the results. This objective is departure from the traditional procedural analysis. Instead of
attained by using a genetic algorithm to evolve the classifiers using fundamental equations of physics pertinent to a prob-
based on their fitness value as indicated by their current lem to analyze a domain, the idea here is to decompose the
strengths. problem domain into a number of grids, where the property

of each cell within this grid evolves or emerges through an
The approach has also been used in enhancing the process interaction with the surrounding cells in the grid. This self-
through which neural networks are used to create function emergent or self-organizing behavior is thought to be signif-
approximations. A rule learning procedure was implemented icant in the development of the next generation of structural
wherein computational feedback on the performance of a synthesis tools; it is an intrinsically decentralized computa-
partly trained network was used to determine the amount tional paradigm ideal for multiple parallel processor
and location of new training patterns required to improve the machines. Preliminary results of work in this area are
network generalization performance [33]. A similar reported in [37,38].
approach to improve the quality of response surface based
approximations is presented in [34]. The application of a Closing Remarks
classifier system approach in turbine design optimization is
presented in Reference 35. The paper has described a subset of attempted applications

of soft-computing tools in problems of multidisciplinary
New Research Directions analysis and design. These tools represent significantly

improved capabilities for solving generically difficult prob-
This review would be incomplete without some reference to lems; more specifically, they overcome difficulties related to
future directions for exploration. The role of soft computing problem dimensionality, handling of a mix of discrete, inte-
tools in structural analysis and design is today on firmer ger, and continuous design variables, accounting for discon-
ground than it has ever been before. Computing speeds tinuities or nonconvexities in the design space, and improved
today are in the MFLOPS-GFLOPS range and predictions capabilities for modeling and design in the absence of gradi-
indicate TFLOPS performance and better in the next decade. ent information. The last item is particularly relevant in a
Analysis and design techniques must be revisited from a design for manufacturing environment, where manufactor-
completely new perspective if such hardware is to be used in ing and production related constraints have received
the most effective manner. Current algorithms, through all increased attention. Soft computing methods are expected to
manners of software enhancement and efforts to parallelize, have a major role in the development of the next generation
have their origins in serial thinking, and without the required of tools for multidisciplinary analysis and design.
intrinsic parallelism, are victims of the law of diminishing
returns when placed on parallel machines. A completely References
new line of thinking born in the parallel processing environ-
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design variable symbol

d, mass 1 location ml

d2 mass 2 location m2

d3  tuning mass 1 (kg) dm,

d4  tuning mass 2 (kg) di2

d5  horizontal flange thickness ratio to box beam t1

d6 left vertical flange thickness ratio to box beam t2

d7  right vertical flange thickness ratio to box beam t3

ds blade twist (deg) 0,

d9 twist shape parameter 5

d4o taper inception point tR

d1l1  chord ratio XC

d 12  rotational speed (rad/sec)

d 13  layup angle of inner vertical flange (deg) 01

d 14  layup angle of outer vertical flange (deg) 02

Table 1. Descrition of the design variable set
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shear force flap moment lag moment thrust in cruise failure criterion
(N) (N m) (Nm) (N)

NN actual % NN actual % NN actual % NN actual % NN actual %

13695 13546 1.10 11403 11711 2.08 5278 5266 0.24 778 784 0.76 0.261 0.261 0.01

8666 8649 0.19 6295 6891 0.50 4059 3994 1.65 517 506 2.17 0.243 0.241 0.83

6864 6790 1.09 6700 6745 0.67 4036 3880 4.72 369 374 1.33 0.247 0.249 0.84

9160 9373 2.27 8409 8406 0.04 3917 3772 3.84 498 502 0.79 0.313 0.308 1.62

14952 15028 0.51 12905 12984 0.61 4082 4086 0.10 857 873 1.83 0.250 0.250 0.02

17002 17001 0.03 12768 12736 0.25 5974 5899 1.27 926 921 0.54 0.319 0.316 0.94
7284 7339 0.75 6934 6957 0.33 11606 11559 0.40 435 427 1.87 0.238 0.244 245

Table 2. Testing of the trained BP network

shear force flap moment lag moment thrust in cruise failure criterion
(N) (N m) (N m) (N)

NN actual % NN actual % NN actual % NN actua % NN actual %

8942 8687 2.93 7316 7504 2.53 3663 3705 1.13 472 483 2.28 0.25 0.258 0.39

14963 14272 4.84 10056 10264 2.02 8273 7892 4.82 766 763 3.93 0.312 0.312 0.01

12384 12579 1.55 10568 10458 1.05 5894 5758 2.36 763 754 1.19 0.235 0.237 0.84

8926 8919 0.08 7045 7058 0.18 5685 5713 0.49 509 502 1.39 0.264 0.266 0.75

10253 10156 0.96 13093 13185 0.69 11796 11183 5.48 933 907 2.86 0.329 0.333 1.20

8113 8046 0.84 8936 8841 1.01 12529 11932 5.00 376 371 1.35 0.347 0.349 0.57

9735 9653 0.85 9618 9685 0.69 22940 23695 3.18 467 454 2.86 0.394 0.390 1.02

Table 3. Testing of the trained CP network

subsystem subsystem subsystem
[A] [B] [C]

objective F(X) cIFz + C2My + c3Mz

]Ph<_Hp, H~f :s P, Wb <_WbUconstraints TIL S TI S TIu R <

Al > AIL CT/O-L < CT/n- nbuck < C'all

< CT/ nYU

mI, m2,M3, tl3, 1 i, t2 4, M4, M5, t 1l,
design t 4 t, 5 7 2

I tl6,t23,t96,varables 116, t 1, t2 
8 ,t3 ,t3 ,t 3 

5 , t17, t8, tl9,

19,13t13 ,t, ± 02 t 201,,3-t3 3lo Ot 6, t21, t22

t3 6, t3 8, t3 9, TC, +02 t210, t3 1 t3 4,

+01 ?"c, K2

Table 4 Topology of system decomposition
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DISCUSSION

Session III, Paper #17

Mr Templin (NRC, Canada) observed that advanced search tools are potentially very complex
and therefore perhaps require "specialist" users. He wondered whether the author saw the need
for such people, or whether he anticipated another solution.

Prof Hajela suggested that as the toolsets are changing, so is the education process. He
believes that today's disciplinary-oriented graduates probably already have some training
in advanced search methods. He further believes that it is these graduates who will lead
industry in a "forced migration" towards at least some of these approaches.


